

Professor: Reginaldo M. Teixeira

1ª Série

Disciplina: Física

Roteiro para atividade experimental

Título: Coeficiente de atrito cinético.

Objetivos:

Determinar o coeficiente de atrito cinético de diferentes tipos de materiais.

Materiais:

- > 01 cronômetro;
- O1 carrinho;
- O1 calha de alumínio;
- O1 pedaço de EVA;
- O1 pedaço de lixa;

Esquema de montagem:

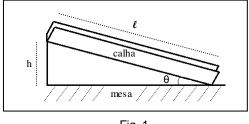


Fig. 1

$sen \theta = \frac{altura}{comprimento} = \frac{h}{\ell}$

Procedimentos:

- 1) Posicione e fixe a calha de forma que esta estabeleça um pequeno ângulo em relação a superfície da mesa (conforme Fig. 1), a fim de aumentar o tempo de execução do movimento e facilitar a tomada de tempo;
- Meça a altura (h) em que a calha foi posicionada e o comprimento da calha (l). Com essas medidas, calcule o ângulo de inclinação (θ).
- 3) No primeiro momento, use somente a calha. Solte o carrinho da posição inicial (S₀ = 0,00 cm) e com o auxílio de um cronômetro meça o tempo que ela leva para atingir a posição final assinalada (S₁ = 80,00 cm). Complete a tabela 1 com os tempos encontrados. Tome, no mínimo, cinco medidas de tempo obtendo assim, um valor mais confiável, que será o tempo médio (tm). Utilize a expressão:

$$\mathbf{t}_{\mathsf{m}} = \frac{t_1 + t_2 + t_3 + t_4 + t_5}{5}$$

4) Determine a aceleração média com a expressão:

$$S = S_0 + V_0 t + \frac{1}{2} a t^2$$

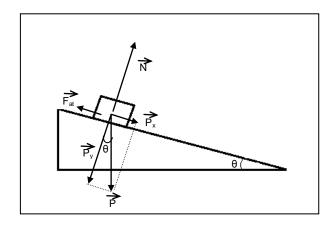

- 5) Em seguida, posicione o EVA no leito da calha e repita os itens 3 e 4, anotando os dados na tabela 2.
- 6) Retire o EVA, coloque a lixa no leito da calha e repita os itens 3 e 4, anotando os dados na tabela 3.

Tabela 1 – Material: Calha						Ângulo:	
S (cm)	t ₁ (s)	t ₂ (s)	t ₃ (s)	t ₄ (s)	t ₅ (s)	t _m (s)	a _m (cm/s²)
$S_0 = 0.00$							a _m =
$S_1 = 80,00$						t _m =	Siii —

Tabela 2 – I	Material: I	EVA					Ângulo:
S (cm)	t ₁ (s)	t ₂ (s)	t ₃ (s)	t ₄ (s)	t ₅ (s)	t _m (s)	a _m (cm/s²)
$S_0 = 0.00$							a _m =
6 - 00 00						t _{m1} =	
$S_1 = 80,00$						·mı —	
Tabela 3 – I	Material: I	LIXA				·mi	Ângulo:
	Material: I	LIXA	t ₃ (s)	t ₄ (s)	t ₅ (s)	t _m (s)	Ângulo: a _m (cm/s²)
Tabela 3 – I			t ₃ (s)	t ₄ (s)	t ₅ (s)		- I

- 7) Conhecendo o valor da aceleração média (am) para cada material utilizado, pode-se determinar os seus respectivos coeficientes de atrito cinético.
 - a) Coeficiente de atrito cinético μ para a calha: _____
 - b) Coeficiente de atrito cinético μ para EVA:
 - c) Coeficiente de atrito cinético μ para lixa:

Formulário:

 $P_x = P. \sin \theta$ $P_y = P. \cos \theta$

 $F_{at} = \mu$.N (aqui, trata-se da força de atrito cinético)

Somatório das forças no eixo x:

Como há aceleração no eixo x, temos uma força resultante:

F_x = m.a_x
$$\rightarrow$$
 P. sen θ - Fat = m. a_x \rightarrow P. sen θ - μ . N = m. a_x \rightarrow P. sen θ - μ . P. cos θ = m. a_x (I)

Como o módulo da força peso é dado por P = mg, substituindo na equação (I) e dividindo os dois lados por m, temos:

$$g. sen \theta - \mu. g. cos \theta = a_x \rightarrow a_x = g(sen \theta - \mu. cos \theta)$$
 (II)

A partir de (II), pode-se calcular o coeficiente de atrito cinético: $\mu = \frac{g.sen\theta - a_x}{g.cos\theta}$

Somatório das forças no eixo y:

$$F_y = m.a_y = 0 \rightarrow N - P.\cos\theta = 0 \rightarrow N = P.\cos\theta$$